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Rigid-plastic large-deformation analysis of geotechnical 
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Abstract-----------------------------------------------------------------­
A new sequential limit analysis scheme with application to geotechnical penetration problems is 
presented. The new scheme relies on previously develpped procedures for classical limit analysis 
as well as on new adaptive remeshing techniques and robust and efficient mathematical program­
ming algorithms. Two plane strain problems involving large penetration are presented to demon­
strate the capabilities of the new scheme. 

1 INTRODUCTION 

Geotechnical penetration problems are quite com­
mon and include the installation of piles and man­
drels, cone penetration testing as well as various 
applications involving earth-burrowing missiles 
('bunker busters'). Common to these problems are 
the extreme deformations induced by the penetrat­
ing object. From a numerical point of view, such sce­
narios call for specialized methods. So far, the line of 
attack has been to extend the usual infinitesimal­
deformation finite element formulations into the 
finite-deformation regime. Examples include the 
works ofHu & Randolph (1998), Sheng et al. (2009), 
and Nazem et al. (2009). In principle, such methods 
are capable of accounting for the exact physical 
behaviour provided, of course, that appropriate 
constitutive models are available. Such models are 
usually formulated and calibrated in the infinite­
simal-deformation while the finite-deformation range 
remains largely unexplored. In addition; the 'com­
plete' approach involves a number of other serious 
complications including severe mesh distortion and 
mapping of state variable from one position to 
another in the course of the penetration. 

These uncertainties with the material behaviour 
and complications with practical implementation 
motivate a re-examination of the perhaps oldest 
approach to large-deformation analysis of materials 
displaying a plastic behaviour, namely that of 
limit analysis, i.e. assuming a rigid-perfectly-plastic 
material behaviour. With this assumption and an 
estimate of the geometry - original as well as de­
formed - the problem reduces to one identical to 
standard bearing capacity. More specifically the 
idea is to perform a sequence of limit analysis with 

each new configuration being updated on the basis 
of the previous failure mode. This scheme, in the 
following denoted sequential limit analysis, can, as 
conventional limit analysis, be carried out either an­
alytically or numerically. Recent analytical studies 
include those ofMaciejewski and]arzebowski (2004) 
who considered a large-deformation version of the 
classic passive earth pressure problem, Maillot & 
Leroy (2006) who considered the problem of kink 
folding in geological structures, and Hambleton & 
Drescher (2010) who solve various problems of 
indentation in cohesive-frictional materials. It is 
further worth noting that sequential limit analysis 
has a long history in metal plasticity where prob­
lems such as drawing, rolling and stamping have 
been considered within this framework (see e.g. 
Hill1950, Kachanov 1971). Numerical formulations 
of sequential limit analysis have also mostly been 
confined to metals. Applications include sheet metal 
forming (Raithatha & Duncan 2009), extrusion 
problems (Leu 2005), and steel structures (Kim & 
Hu 2006). 

In the following, a numerical formulation of se­
quential limit analysis, with particular emphasis on 
geotechnical penetration problems, is presented. In 
contrast to previous schemes in the field, the mesh 
distortions are of such a severity that remeshing 
must be considered. In addition to describing the 
new geometry in each time step, the remeshing is 
adaptive in the sense that the mesh is refined with 
an aim of improving the limit loads computed in 
each time step. Two examples demonstrating the 
capabilities of the new scheme are presented. These 
both involve plane strain deep penetration problems 
which in conventional finite element formulations 
are known to be particularly difficult. 
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Regarding the simplified material behaviour The above eq 
assumed, it should be noted that since the larger variational state 1 • 
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perfectly plastic material behaviour is not altogether F( )I 
unreasonable. This is true for metals and perhaps subject to O" : 

even more so for soils where the concept of elasticity 
in many ways is questionable. However, more com­
plex models are entirely possible to treat within 
the general framework presented. Indeed, common 
models involving nonlinear elasticity, hardening 
yield surfaces, viscoplasticity, etc can be included 
without any noteworthy complications following 
the work of Krabbenhoft et al. (2005), Krabbenhoft 
et al. (2007), Krabbenhoft (2009) in the infinitesimal­
deformation regime. 

2 LIMIT ANALYSIS 

2.1 Classical Limit Analysis 
Classical limit analysis is based on a rigid-perfectly­
plastic material behaviour and further assumes that 
the deformations up to the point of collapse are 
small. Consider a body of such a material occupying 
a V with boundary S. The governing equations a~e 
here given by: 

VTrr+b0 =0 inV (1) 

NTrr = at0 on S 

Vu =A v aF(tT) (2) 

F(t:T)<O, ~2:0, AF(«T)=O (3) 

where t:T are the stresses, u are the displacements, and 
A is the plastic multiplier. As usual, a superposed dot 
indicates differentiation with respect to pseudo-tim_e 
(consequently, u are referred to as the velocities), V 
is the standard linear strain-displacement operator 
(its transpose being the equilibrium operator), and 
NT= VT (nxT) with n being the outward normal to 
the boundary and x the spatial coordinate. The 
loads are given by a set of predefined body forces, h 0, 

and a set of predefined tractions, t 0, which are mag­
nified by the collapse load factor a. Finally, the yield 
function is given by F(«T). The task is now to deter­
mine a such that the equilibrium equations and 
static boundary conditions (1), the stress-strain re­
lations incorporation the associated flow rule (2), 
and the yield and complementarity conditions (3) 
are satisfied. In addition, in order to limit the mag­
nitude of the external rate of work, a condition of 
the type: 

fstJudS=1 (4) 

is usually enforced. 
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Abstract---------------------------------------------------------------­
A new sequential limit analysis scheme with application to geotechnical penetration problems is 
presented. The new scheme relies on previously developed procedures for classical limit analysis, 
as. well as o.n new adaptive remeshing techniques and robust and efficient mathematical program-, 
mmg algonthms. Two plane strain problems involving large penetration are presented to demon­
strate the capabilities of the new scheme. 

1 INTRODUCTION 

Geotechnical penetration problems are quite com­
mon and include the installation of piles and man­
drels, cone penetration testing as well as various 
applications involving earth-burrowing missiles 
('bunker busters'). Common to these problems are 
the extreme deformations induced by the penetrat­
ing object. From a numerical point of view, such sce­
narios call for specialized methods. So far, the line of 
attack has been to extend the usual infinitesimal­
deformation finite element formulations into the 
finite-deformation regime. Examples include the 
works ofHu & Randolph (1998), Sheng et al. (2009), 
and Nazem et al. (2009). In principle, such methods 
are capable of accounting for the exact physical 
behaviour provided, of course, that appropriate 
constitutive models are available. Such models are 
usually formulated and calibrated in the infinite­
simal-deformation while the finite-deformation range 
remains largely unexplored. In addition; the 'com­
plete' approach involves a number of other serious 
complications including severe mesh distortion and 
mapping of state variable f;om one position to 
another in the course of the penetration. 

These uncertainties with the material behaviour 
and complications with practical implementation 
motivate a re-examination of the perhaps oldest 
approach to large-deformation analysis of materials 
displaying a plastic behaviour, namely that of 
limit analysis, i.e. assuming a rigid-perfectly-plastic 
material behaviour. With this assumption and an 
estimate of the geometry - original as well as de­
formed - the problem reduces to one identical to 
standard bearing capacity. More specifically the 
idea is to perform a sequence of limit analysis with 

each new configuration being updated on the basis 
of the previous failure mode. This scheme, in the 
following denoted sequential limit analysis, can, as 
conventional limit analysis, be carried out either an­
alytically or numerically. Recent analytical studies 
include those ofMaciejewski andJarzebowski (2004) 
who considered a large-deformation version of the 
classic passive earth pressure problem, Maillot & 
Leroy (2006) who considered the problem of kink 
folding in geological structures, and Hambleton & 
Drescher (2010) who solve various problems of 
indentation in cohesive-frictional materials. It is 
further worth noting that sequential limit analysis 
has a long history in metal plasticity where prob­
lems such as drawing, rolling and stamping have 
been considered within this framework (see e.g. 
Hill1950, Kachanov 1971). Numerical formulations 
of sequential limit analysis have also mostly been 
confined to metals. Applications include sheet metal 
forming (Raithatha & Duncan 2009), extrusion 
problems (Leu 2005), and steel structures (Kim & 
Hu2006). 

In the following, a numerical formulation of se­
quential limit analysis, with particular emphasis on 
geotechnical penetration problems, is presented. In 
contrast to previous schemes in the field, the mesh 
distortions are of such a severity that remeshing 
must be considered. In addition to describing the 
new geometry in each time step, the remeshing is 
adaptive in the sense that the mesh is refined with 
an aim of improving the limit loads computed in 
each time step. Two examples demonstrating the 
capabilities of the new scheme are presented. These 
both involve plane strain deep penetration problems 
which in conventional finite element formulations 
are known to be particularly difficult. 
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Regarding the simplified material behaviour 
assumed, it should be noted that since the larger 
part of the strains accumulated in most finite 
deformation problems can be expected to be of the 
plastic kind. As such, the assumption of a rigid­
perfectly plastic material behaviour is not altogether 
unreasonable. This is true for metals and perhaps 
even more so for soils where the concept of elasticity 
in many ways is questionable. However, more com­
plex models are entirely possible to treat within 
the general framework presented. Indeed, common 
models involving nonlinear elasticity, hardening 
yield surfaces, viscoplasticity, etc can be included 
without any noteworthy complications following 
the work of Krabbenhoft et al. (2005), Krabbenhoft 
et al. (2007), Krabbenhoft (2009) in the infinitesimal­
deformation regime. 

2 LIMIT ANALYSIS 

2.1 Classical Limit Analysis 
Classical limit analysis is based on a rigid-perfectly­
plastic material behaviour and further assumes that 
the deformations up to the point of collapse are 
small. Consider a body of such a material occupying 
a V with boundary S. The governing equations are 
here given by: 

VTO'+b0 =0 inV (1) 

NTO'=at0 onS 

Vu =A v uF(O') 

F(O')<O, ~>0, AF(O')=O 

(2) 

(3) 

'Yhere 0' are the stresses, u are the displacements, and 
A is the plastic multiplier. As usual, a superposed dot 
indicates differentiation with respect to pseudo-tim_e 
(consequently, u are referred to as the velocities), V 
is the standard linear strain-displacement operator 
(its tr~nspose being the equilibrium operator), and 
NT= VT (nxT) with n being the outward normal to 

the boundary and x the spatial coordinate. The 
loads are given by a set of predefined body forces, b 0, 

and a set of predefined tractions, t0, which are mag­
nified by the collapse load factor a. Finally, the yield 
function is given by F(O'). The task is now to deter­
mine a such that the equilibrium equations and 
static boundary conditions (1), the stress-strain re­
lations incorporation the associated flow rule (2), 
and the yield and complementarity conditions (3) 
are satisfied. In addition, in order to limit the mag­
nitude of the external rate of work, a condition of 
the type: 

fst6udS=1 (4) 
'-, 

is usually enforced. 

The above equations may be cast in terms of a 
variational statement, namely (Krabbenhoft et al. 
2005, Krabbenhoft 2009): 

~~·m!n. a+ fv O'TVitdV- fv b;i"Vudv-a{t6udS 

subject to F(O') ::s: 0 

(5) 
The max-part of this principle constitutes von Mises' 
principle of maximum plastic dissipation while the 
min-part concerns the total potential energy and 
corresponds to enforcing equilibrium. The upper 
and lower bound theorems follow as special cases of 
the principle. 

2.1.1 Finite Element Discretization 
The principle (5) is readily discretized in terms of fi­
nite elements, namely by postulating approxima­
tions to the state variables 0' and u. Using standard 
finite element notation, we have 

0'"" Nu(~)«T (6) 

u""Nu(x)u, Vu""Bu(x)u 

where Bu(x) = VNu(x). In standard finite formula­
tions, the stress shape functions in Nu are chosen as 
being continuous within the elements and discon­
tinuous between elements while N u in addition are 
continuous between elements and usually one poly­
nomial degree higher than Nu. Such formulations 
may under certain circumstances result in rigorous 
upper bounds (Krabbenhoft 2007). Conversely, it is 
possible to interchange the approximation proper­
ties of the stresses and the displacements such that 
the approximate stress distributions are assumed 
continuous between elements while the displace­
ments are discontinuous and of lower polynomial 
degree than the stresses. Under certain circumstances, 
this choice of finite element approximation leads to 
a rigorous lower bound formulation. Substituting · · 
the above approximations into the variational prin­
ciple (5) leads to the following discrete principle 

max.mm. a+O"TBu-p6u-apTu 
u,a t.i. 

(7) 
subject to F(O'):::::: 0 

where 

B= t N~BuudV, p 0 = fv N~b0 dV, p= 1 N~t0 dS 
(8) 

end where superposed hats to indicated discrete 
quantities has been dropped. Solving the min-part 
of (7) first yields the following problem: 

max1mze a 
<r,a 

subject to BTO' = ap + p0 

F(O') < 0 (9) 
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which is of the familiar lower bound type (maximize 
the collapse load multiplier subject to yield and 
equilibrium-type conditions) although upper 
bounds on in fact may result depending on the par­
ticular finite element discretization as discussed 
above. Indeed, in the following, we have used such 
an upper bound formulation. The displacements are 
here interpolated quadratically over six-node trian­
gles while the stresses vary linearly within each 
triangle. 

2. 1.2 Optimization Algorithms 
The finite-dimensional optimization problem (9) 
may be solved in a number of ways using both gen­
eral (e.g. Lyamin and Sloan 2002a,b, Krabbenhoft 
and Damkilde 2003) or more specialized methods. A 
relatively recent approach is to cast the problem in 
terms of a so-called conic program. Such programs 
can be solved very efficiently by means of dedicated 
algorithms. Examples include the second-order cone 
programming (SOCP) solver MOSEK of Andersen 
et al. (2003) and the more general conic program­
ming solver SeDuMi originaly due to Sturm (1999). 
The Authors have recently developed a new solver, 
SONIC, along the lines of Andersen et al. (2003) 
which has been used to solve the problems in the 
present paper. A Windows executable of the solver is 
availabl~ from the corresponding author. SONIC 
accepts problems in the SOCP standard form: 

m1n1m1ze 

subject to Ax=b 
XEK (10) 

where K defines a second-order cone: 

(11) 

A number of relevant yield criteria can be cast in this 
form including the Drucker-Prager criterion as well 
as the plane strain versions of the Tresca and Mohr­
Coulomb criteria (Krabbenhoft et al. 2007). The full 
three-dimensional Mohr-Coulomb criterion can be 
cast in terms of a set of semidefinite constraints as 
shown by Krabbenhoft et al. (2008). 

As part of the solution of (9), the dual variables 
are recovered. It may be shown that the dual vari­
ables, or Lagrange multipliers, associated with the 
equilibrium type constraints are the velocities which 
thus are recovered even though the problem is cast 
in terms of stress variables. This is a useful property, 
not least in connection with sequential limit 
analysis. 

the geometry of the problem at each pseudo time 
step is updated based on the velocity field informa­
tion of the previous analysis collapse mechanism. 

Hence, at the end of each step, the algorithm for 
the geometry update starts by identifying the mesh 
boundary segments, setting the limits for regions 
with distinct material properties. Then, the coordi­
nates of the nodes defining these segments are dis­
placed accordingly to the current velocity field and 
the adopted pseudo-time increment. Due to lack of 
better information, the velocities are assumed as 
constant during each time step. 

The size of the pseudo-time increments is stipu­
lated in order to achieve the desired maximum nodal 
displacement, a prescribed parameter defined at the 
beginning of the analysis. 

Moreover, any inconsistent overlapping of the el­
ements in the updated configuration of the existing 
mesh must be avoided so that the boundary seg­
ments can be properly identified. This can be accom­
plished by reducing the pseudo-timesize increment 
whenever an element in its deformed configuration 
is left with a negative Jacobian determinant, in other 
words, a negative area. 

Once defined both the current size step and the re­
quired boundary segment data, the remaining infor­
mation of the existing mesh can simply be destroyed. 

Mention must be made for the fact that, in contrast 
with other more conventional large-deformation 
approaches, in the sequential limit analysis there is 
no need to perform any kind of mapping between 
internal state variables of the previous iteration 
mesh and the new one, due to the fact that the col­
lapse load is not affected by an initial stress/strain 
state (Lubliner 1990). For this reason, any issue re­
lated with mesh distortion is non-existent in this 
kind of approach. 

Lastly, and to conclude the geometry update al­
gorithm, adjacent regions are tested to verify if there 
is any interpenetration between them in the updated 
configuration. If so, a new contact interface is de­
fined and the overlapping material is discarded. 

At this stage we are able to proceed with the limit 
analysis of the current problem configuration. An 
initial course mesh is generated over the existing 
regions, which, during the analysis, is gradually 
refined following the adaptive mesh refinement 
strategy proposed in (Lyamin et al. 2004). 

3 EXAMPLES 

3.1 Strip Footing 
The first example concerns the strip footing shown 

2.2 Sequential Limit Analysis in Figure 2. The footing is 1m wide, sits on a weight­
As previously stated, the basic idea of any sequential less, purely cohesive soil and is subjected to a mono­
limit analysis scheme is to perform a series of sue-"' ~tonically increasing central vertical load. This 
cessive standard limit analysis computations where example has been used by Nazem et al. (2006, 2010), 
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to test conventional large-deformation elastoplastic 
analyses. The small-deformation limit load is given by 

VjB = (2 + 7T)cu ""'5.14cu (12) 

" u 
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2 4 6 8 10 
Penetration, m 

Figure 1 Load-deformation curve for strip footing on 
weightless soil. 

(a) Penetration = 1 m 

Moreover, for a strip footing with a sufficiently large 
embedment, the mode of failure changes from a sur­
face-type mechanism to a local mechanism with a 
limit load given by 

V /B = (2 + 27T)Cu ""'8.28cu (13) 

Hence, for the complete large-deformation problem 
it might be expected that the load would tend to 
(12) as the deformations induced would render the 
geometry equivalent to that of a strip footing with 
a large embedment. Indeed, this was the conclusion 
of Nazem et al. (2009). However, the results of 
the present analysis are, somewhat different. Thus, 
from the load-deformation curve shown in Figure 1, 
we see that the load keeps increasing beyond 
V /B = (2 + 27T)cu ""'8.28cu. The explanation for this 
can be found in the deformation patterns shown in 
Figure 2. Thus, when the local mechanism becomes 
active [Figure 2(d)], the soil collapses into the cavity 
and the geometry of the problem changes slightly 

(b) Penetration = 3 m 

(c) Penetration = 5 m (d) Penetration = 7 m 

Figure 2 Penetration of strip footing of half-width B/2 = 0.5 m in a weightless, purely cohesive soil. 
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from that assumed in the large-embedment small 
deformation problem and the corresponding load is 
somewhat larger. 

3.2 Wall 
The next example concerns the penetration of a wall, 
(i.e. the plane strain analogue of a pile) into a pon­
derable, purely cohesive soil (see Figure 3). In con­
ventional finite element formulations this problem 

(a) Penetration = 1 m 

is considered particularly difficult and special tech­
niques are often used to ensure that the rigid object 
penetrates the soil properly. These include the so­
called "zipper technique" where the mesh gradually 
is "unzipped" as the pile penetrates the soil. In the 
present approach, such techniques are unnecessary. 
Indeed, the effects of and the progressive penetra­
tion are fully accounted for without resorting to any 
other technique than the aforementioned adaptive 

(b) Penetration= 3m 

(c) Penetration= 5 m . (d) Penetration = 7 m 

Figure 3 Penetration of wall (plane strain equivalent ;t pile) of half-width B/2 = 0.5 m. The tip inclination is 45 degrees 
from horizontal. Soil parameters: c" = 20 kPa, 'Ysat = 20 kN/m3

• 
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mesh refinement, an example of which is shown in 
Figure 3. From this figure we also see that relatively 
large areas at a fair distance away from the pile con­
tribute significantly to the overall behaviour. In 
other words, the plastic zone is not confined to a 
narrow neighborhood around the pile as is often as­
sumed in or deducted from conventional finite ele­
ment analyses. 

4 CONCLUSIONS 

A sequential limit analysis formulation has been 
presented and two examples given to demonstrate 
its capabilities. Future enhancements will focus on 
extending the methodology to more realistic soil 
models following the general variational framework 
of Krabbenhoft et al. (2005, 2009). 
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